Government General Degree College Chapra Department of Mathematics PO and CO (NEP) First Semester

Programme Outcome:

On successful completion of the B.Sc. Mathematics Major/Minor/MDC 1st Semester, students will be able to:

1. Demonstrate comprehensive knowledge of foundational and advanced topics in mathematics, including set theory, algebra, calculus, real and complex analysis.

2. Develop strong analytical and logical reasoning skills to solve complex mathematical problems, including those involving the use of De Moivre's theorem, group theory, matrix operations.

3. Apply mathematical concepts and tools to model and analyze real-world problems in various fields such as physics, economics, computer science, and engineering.

4. Understand and apply abstract mathematical structures, including groups, permutations, equivalence relations, and functions, fostering a deeper theoretical understanding of modern mathematics.

5. Perform statistical analysis and data interpretation using measures of central tendency, dispersion, skewness, and kurtosis, and create graphical representations of data for effective communication.

6. Communicate mathematical ideas effectively through written, verbal, and visual means, demonstrating clarity and coherence in logical argumentation and proof-writing.

7. Pursue advanced studies or research in mathematics or related disciplines and apply their knowledge to academic, industrial, or governmental roles requiring mathematical expertise.

Course Outcome:

Course code & title	Syllabus	Course Outcome
MATH-M-T-01:	Unit 1. [25L]	After successfully completing
Calculus & Analytical	Hyperbolic functions and	this course, a student will be
Geometry	its derivative, higher order derivatives, Leibnitz rule and its	able to:
	applications to problems of type	CO1 : Understand and apply
	e^{ax+b} sinx, $e^{ax+b}cosx$, $(ax+b)inx$, $(ax+b)^{n}cosx$.	derivatives of hyperbolic and
	Pedal equations.	trigonometric functions, including higher-order
	Curvature, radius of	derivatives using Leibniz's rule
	curvature, centre of curvature, circle of curvature	in problems involving exponential and trigonometri
	Asymptotes	combinations.
	Envelopes.	
	Singular points,	CO2 : Derive and apply pedal
	concavity and inflection points.	equations, curvature, radius/centre/circle of
	Curve tracing in	curvature, and understand th
	Cartesian coordinates, tracing in	geometrical behavior of curve
	polar coordinates of standard curves.	through tracing techniques in
		Cartesian and polar
	L'Hospital's rule, applications in business,	coordinates.
	economics and life sciences.	
		CO3 : Analyze the nature of
	Unit 2. [16L]	curves using concepts like
	Reduction formulae, derivations and illustrations of	asymptotes, envelopes, singular points, concavity, and
	reduction formulae of the type	inflection points.
	$\int sinnx dx$, $\int cosnx dx$, $\int tannx dx$,	
	$\int sec_n x dx, \int (\log x)_n dx,$	CO4: Apply L'Hospital's Rule i
	$\int sin_n x cos_m x dx.$ Parametric equations,	evaluating limits and
	parameterizing a curve, arc length	understand its relevance in
	of a curve, arc length of	real-world applications such a
	parametric curves, area under a	economics, business, and life
	curve, area and volume of surface of revolution, techniques of	sciences.
	sketching conics.	CO5 : Derive and utilize
	Unit 3. [30L]	reduction formulae for
	Transformation of	evaluating integrals involving
	coordinate axes, pair of straight	trigonometric and logarithmic
	line, reflection properties of conics, rotation of axes and	functions.
	second-degree equations,	CO6 : Compute arc length,
	classification of conics using the discriminant, polar equations of	surface area, and volume of
	conics.	revolution using parametric
	Straight lines in 3D,	forms and sketch standard
	sphere, cylindrical surfaces.	parametric curves and conics.
	central conicoids, paraboloids, plane sections of conicoids,	CO7: Understand and apply
	generating lines, classification of	coordinate transformations,
	quadrics, illustrations of graphing	classification of conics using
	standard quadric surfaces like cone, ellipsoid.	discriminants, and analyze

	 Graphical Demonstration (Teaching Aid) [4L] Plotting of graphs of function e^{αx+b}, log(ax+b), 1/(ax+b), sin(ax+b), cos(ax+b), ax+b and to illustrate the effect of a and b on the graph. Plotting the graphs of polynomials of degree 4 and 5, the derivative graph, the second derivative graph and comparing them. Sketching parametric curves (Eg. trochoid, cycloid, epicycloids, hypocycloid). Obtaining the surface of the revolution of curves. Tracing of conics in Cartesian coordinates / polar coordinates. Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates. 	three-dimensional surfaces like spheres, cones, and quadrics. CO8 : Develop graphical intuition by plotting and comparing functions and surfaces using various parameters and coordinate systems.
MATH-SEC-T-01: Logic & Boolean Algebra	 Unit 1. [15L] Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contrapositive and inverse propositions and precedence of logical operators. Propositional equivalence, Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations. Unit 2. [10L] Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle. Lattices as ordered sets, lattices, products and homomorphisms. 	After successfully completing this course, a student will be able to: CO1: Understand propositions, truth tables, and logical connectives including implications, biconditionals, and their related forms such as converse and contrapositive. CO2: Analyze and simplify logical expressions using propositional and logical equivalences. CO3: Use predicates and quantifiers effectively in formal logical statements, including their negation and binding. CO4: Understand the structure and properties of ordered sets

	 Unit-3 [20L] Definition, examples and properties of modular and distributive lattices, Boolean algebras, Boolean polynomials, minimal and maximal forms of Boolean polynomials. Quinn-McCluskey method, Karnaugh diagrams, logic gates, switching circuits and applications of switching circuits. 	 and their mappings, and apply the duality principle. CO5: Define lattices, identify sublattices, and understand product lattices and homomorphisms. CO6: Differentiate between modular and distributive lattices and understand the structure and function of Boolean algebras. CO7: Represent and simplify Boolean expressions using Boolean polynomials, Karnaugh maps, and the Quinn-McCluskey method. CO8: Design and analyze logic gates and switching circuits, and understand their
MATH-MI-T-01: Algebra & Analytical Geometry	Unit 1. [20L] Complex Numbers: De Moivre's theorem and its applications. Exponential, Sine, Cosine and Logarithm of a complex number. Definition of az. Inverse circular and hyperbolic functions. Polynomials: Fundamental theorem of algebra (Statement only). Polynomials with real coefficients, nature of roots of an equation (surd or complex roots occur in pairs). Statement of Descartes's rule of signs and its applications. Relation between roots and coefficients, transformations of equations. Cardan's method of solution of a cubic equation. Rank of a matrix: Determination of rank either by considering minors or by the sweep-out process. Consistency and solution of a system of linear equations (not more than 3 variables) by matrix method. Equivalence relations and	 applications in digital systems. After successful completion of the course, a student will be able to: CO1: Apply De Moivre's theorem and understand exponential, trigonometric, and logarithmic forms of complex numbers, including inverse functions. CO2: Analyze polynomials, apply Descartes's Rule of Signs, understand the nature of roots, and solve cubic equations using Cardan's method. CO3: Determine the rank of matrices and solve systems of linear equations using matrix methods, ensuring consistency and interpretation of solutions.
	partitions. Functions, composition of functions, invertible functions,	CO4 : Understand equivalence relations, partitions, and

	one-to-one correspondence and cardinality of a set Definition and elementary properties of groups. Concepts of permutation Group, alternating group, finite groups: S_3, V_4 . The group Z_n of integers	function types, including one- to-one correspondences and cardinality. CO5 : Define and explore group structures, identify subgroups,
	under addition modulo n. Order of an element, order of a group, subgroups and examples of subgroups.	and analyze group properties including permutations and finite groups like S ₃ , V ₄ , and Z _n . CO6 : Perform transformations
	Unit 2. [30L] Transformations of rectangular axes: Translation, rotation and their combinations. Invariants.	of rectangular axes and use them to reduce general second-degree equations to canonical forms.
	General equation of second degree in x and y: Reduction to canonical forms. Classification of conics.	CO7 : Classify and analyze conics and pairs of straight lines through algebraic conditions, bisectors, angles, and point intersections.
	Pair of straight lines: Condition that the general equation of 2 nd degree in x and y may represent two straight lines. Point of intersection of two intersecting straight lines. Angle between two lines given by ax ² +2hxy+by ² =0. Equation of bisectors. Equation of two lines joining the origin to the points in which a line meets a conic.	CO8 : Use polar coordinates for conics and straight lines, derive equations of tangents, normals, and chords, and explore 3D figures like spheres and cones.
	Polar equation of straight lines and circles. Polar equation of a conic refers to a focus as a pole. Equation of chord joining two points. Equations of tangents and normals.	
	Sphere and its tangent planes. Right circular cone.	
MATH-MD-T-01 Basic Mathematics	Unit 1. Set Theory: [5L] • Introduction to sets and their representations. The empty set, finite and infinite sets, equal sets, subsets, power set, and Universal set.	After completing this course, the student will be able to: CO1 : Understand the concept of sets, perform set operations
	• Venn Diagrams, operations on sets, complement of a set, problems on union and intersection of sets.	using Venn diagrams, and solve problems involving union, intersection, and complement.
	Unit 2. Complex Numbers: [5L]	CO2 : Represent complex numbers in polar form and

Polar representation of complex numbers.	apply De Moivre's Theorem to compute powers and roots.
• De Moivre's theorem (without proof) for rational indices and their applications.	CO3 : Identify and solve linear and quadratic equations; apply Descartes's Rule of Signs and
Unit 3. Theory of Equations: [10L] • Introduction and	use root-coefficient relationships.
definition of equation. Types of equations.Relation between roots	CO4 : Understand the structure and types of matrices,
and coefficients. Descartes's rule of signs.	compute determinants, and solve systems of equations using inverse and Cramer's
• Linear and quadratic equations and their solution. Nature of the roots of quadratic equations.	Rule. CO5 : Grasp the basic concepts
Unit 4. Matrix & Determinant: [10L]	of statistics, differentiate between types of data, and represent data effectively
• Definition of a Matrix. Types of Matrices. Elementary operations on Matrices.	using tables and graphs.
• Determinant of a square matrix (up to third order). Properties of determinants. Cofactors and minor of a determinant.	CO6 : Calculate and interpret measures of central tendency and dispersion, and assess data distribution using skewness and kurtosis.
• Transpose and Adjoint of a matrix. Symmetric and Skew Symmetric Matrices.	
• Inverse of a matrix. Solution of system of linear equations (up to third order) using matrix inversion method and Cramer's Rule.	
 Unit 5. [5L] Definition and scope of statistics, concepts of statistical population and sample. 	
• Data: qualitative and quantitative, discrete and continuous data types, primary and secondary data.	
• Presentation of data: tabular and graphical.	
• Frequency distribution, cumulative frequency distribution and their graphical representations: histogram, frequency polygon, frequency	
curve, and O-gives.	

Unit 6. [10L] • Measures of Central Tendency: mean, weighted mean, median, mode.	
• Measures of Dispersion: range, mean deviation, standard deviation, coefficient of variation, moments, skewness and kurtosis.	